
 Advanced search

Linux Journal Issue #10/February 1995

Features

A Conversation with Olaf Kirsch
The author of the Network Administrator's Guide tells us a little
something about his life and the NaG

Using Tcl and Tk from Your C Programs by Matt Welsh
This month we'll show you how to use Tcl and Tk from your C
programs.

Linux Conference at Open Systems World/FedUNIX 1994 by Belinda
Frazier

A remarkable conference with developers, support persons,
resellers and end-users.

SCADA-Linux Still Hard at Work by Vance Petree
Time marches on, Linux marches on, and one of the cardinal
rules of the universe manifests itself.

News & Articles

Report on Comdex 1994 by Belinda Frazier
What Your DOS Manual Doesn't Tell You About Linux by Liam
Greenwood
What's GNU? by Arnold Robbins

Columns

Letters to the Editor
Stop the Presses by Phil Hughes
New Products

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/010/0040.html
https://secure2.linuxjournal.com/ljarchive/LJ/010/0044.html
https://secure2.linuxjournal.com/ljarchive/LJ/010/0048.html
https://secure2.linuxjournal.com/ljarchive/LJ/010/1015.html
https://secure2.linuxjournal.com/ljarchive/LJ/010/0045.html
https://secure2.linuxjournal.com/ljarchive/LJ/010/0047.html
https://secure2.linuxjournal.com/ljarchive/LJ/010/2888.html
https://secure2.linuxjournal.com/ljarchive/LJ/010/2887.html
https://secure2.linuxjournal.com/ljarchive/LJ/010/2886.html
https://secure2.linuxjournal.com/ljarchive/LJ/010/2889.html

Kernel Korner : Block Device Drivers: Interrupts by Michael K.
Johnson

Archive Index

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/010/2885.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

A Conversation with Olaf Kirch

LJ Staff

Issue #10, February 1995

The author of the Linux Network Administrator's Guide tells us a little
something about his life and the NAG.

Linux Journal: Tell us a little bit about yourself. How old are you? Where did you
go to school and what did you study? What are your hobbies?

Olaf Kirch: I'm 28 and right now I'm working as a developer for a small company
in the CAD/CAM business. I studied math and computer science at Darmstadt
University, Germany, and graduated about one year ago.

One of the things I do in my spare time is, of course, tend Linux boxes, but I
also read and paint a bit. And

I like bicycling. On my holidays, I love to go hiking with a backpack—the farther
away from any terminal, the better.

LJ: How did you start using Linux?

Olaf: I installed my first Linux system from an MCC Interim distribution some
time back in 1992. Before that, my home box was an Atari running Minix, which
was a little painful. When I heard of Linux, I instantly junked the Atari and
bought a PC. I got the MCC release from some kind soul who offered a gratis
copying service on German Usenet. You only had to send him seven floppies...

LJ: As the principal author of the Linux Network Administrator's Guide, you have
helped a lot of Linux users. How did you get started?

Olaf: I got into the whole project almost by accident. Initially, I meant to
contribute only a UUCP chapter to the System Administrator's Guide. When I
followed up with a chapter on smail and released it to the DOC channel on

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Linux Activists, I mused aloud “Wouldn't it be nice to have an entire Networking
Guide?” “Hey, great,” everyone said, “I'd say, go for it!” I was trapped.

Early on, progress was rather slow, because I wasn't as comfortable with
English as I thought. But the people on the DOC channel were very helpful, and
I got lots of reviews. My most important reviewer was Andy Oram at O'Reilly,
who got involved in the book in late 1993.

Unfortunately, I also had to write my MS thesis, but in the end it worked out
well. I'm only glad my prof never caught me in the terminal room.

LJ: You say you “trapped” yourself into writing the NAG. Were you a networking
guru when you started writing it?

Olaf: No, not at all. I had hacked on UUCP and various mailers like smail2 and
umail, but my ideas about TCP/IP networking, etc., were rather foggy. To put it
more bluntly, I was just another clueless newbie then. But I was very curious, so
I got myself some books, pestered developers with stupid questions and spent
endless hours browsing source code. BTW (by the way), that's one of the main
lessons I learned from the whole thing: If you don't know how something
works, read the source. It really helps.

LJ: Do you have a network at home or just a single computer?

Olaf: Most of the time, I have only one computer at home, so I have to test a lot
of things using only local loopback. I do have some friends, however, who are
running networked Linux boxes and they always call me when they have a
problem or want to install new applications. This way I can try out everything
on their networks; this has the added benefit that if anything goes wrong, their
machines go down, not mine.

LJ: What is your connection to the Internet?

Olaf: I get mail and news via UUCP from brewhq, our domain's main hub that
has an Internet uplink via ISDN. For interactive things like FTP, I use a SLIP link,
but I hope to have ISDN, too, some time soon.

LJ: What future do you see for the NAG? Do you intend to keep revising it to
keep it up to date?

Olaf: Yes, I do, at least for a while. The basic network administration issues in
Linux don't change that rapidly at the moment, so I think I'll release updates
every few months.

Of course, I'm aware there's a lot going on that I didn't cover in the NAG, like
IPX, ham radio and so on.

I also had offers from people who wanted to write something on sendmail V8,
INN and the BSD automounter. On the other hand, I feel the book is already
rather hefty, so

I'll probably not add any new sections. Maybe there will be a sequel, but don't
hold your breath.

LJ: Maybe a Basic Linux Network Administrator's Guide and an Advanced Linux
Network Administrators Guide?

Olaf: I'm thinking more of a collection of papers, a little like the management
documents in the 4.4BSD System Manager's Manual. I would want to make it
less closed than the NAG itself, so that different people can contribute more
easily. I had very firm ideas about how detailed the networking guide should
be, up to the point that some people considered it “dumbed down”. Vince
Skahan, who wrote the sendmail chapter never complained, but I think I
badgered him quite a lot. For the sequel, I would lend people a hand at writing
something, without imposing my views on them.

LJ: What suggestions do you have for those people who are interested in
learning about topics you decided not to cover? How can they learn about
them?

Olaf: That depends. For some packages, like INN, a quite exhaustive FAQ is
distributed on the Net. For sendmail V8, you can always get the bat book from
O'Reilly. It's about the size of a brick, but very useful. The IPX and AX.25 stuff is
still largely undocumented, so your best bet is to read the sources.

LJ: What has Linux done for your professional life?

Olaf: Difficult question. People usually don't roll out the red carpet for you just
because you say, “Hey, I wrote a book on Linux, why don't you hire me?” On my
current job,

I don't get involved with network administration a lot. I'm mainly coding C++
and Motif applications in an HP environment, but I'm quite happy with it.

LJ: In the preface of the NAG, you say that one of your favorite sports is “doing
things with sed that other people would reach for their perl interpreter for.” Do
you have a favorite sed hack you would like to tell us about?

Olaf: First, let me say that I don't believe perl is evil or anything. I just think that
sed is more fun, just the way the Obfuscated C Code Contest is. My favorite sed
hack is a short script I wrote that computes prime numbers: If you give it a
number n on standard input, it will print all primes smaller than 2^n on
standard out.

LJ: Will you give any hints as to how you got that to work?

Olaf: There's nothing magic about it. The script is a simple sieve algorithm. The
only tricky thing is incrementing and decrementing numbers. You can do that
by shifting a marker from right to left, very much like a carry flag. Say I have
7890@ as input and want to decrement it. Then I replace 0@ with @9, and
continue. Any other digit is decremented by one and the marker removed, i.e.,
9@ becomes 8, 8@ becomes 7, etc. Quite silly, I admit.

LJ: Thanks for taking the time to do this interview!

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/010/toc010.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Using Tcl and Tk from Your C Programs

Matt Welsh

Issue #10, February 1995

In the December issue, we introduced X Window System programming with Tcl
and Tk, showing you how to write wish scripts for simple X-based applications.
This month, we'll show you how to use Tcl and Tk from your C programs.

Tcl was originally designed to be an “extension language”--that is, an
interpreted script language to be embedded in another program (say, one
written in C) and used to either handle the mundane tasks of user
customizations, or, with Tk, more complex tasks such as providing an X Window
System interface for the program. The Tcl interpreter itself is simply a library of
functions which you can invoke from your program; Tk is a series of routines
used in conjunction with the Tcl interpreter. Although you can write Tcl/Tk
programs entirely as scripts, to be executed via wish, this is only one side of the
story. To really make this system shine you need to utilize Tcl and Tk from other
programs.

Ousterhout's book, Tcl and the Tk Toolkit, contains exhaustive material on
linking the Tcl interpreter with your C programs. What this generally entails is
having your program produce or read Tcl commands from some source and
pass the commands, as strings, to the Tcl interpreter functions, which return
the result of evaluating and executing the Tcl expressions.

While this mechanism is certainly useful, there are several drawbacks. First of
all, it requires the programmer to learn the details of interfacing their C code
with the Tcl interpreter. While this is not usually difficult, it means that the
programmer must not only work partly in C and partly in Tcl (which may be an
unfamiliar language at first), but also learn the details of using the Tcl library
routines. In most cases this requires the program to be reorganized to some
extent—for example, the program's main function is replaced with a Tcl “event
loop”.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

The other drawback is that the Tcl and Tk libraries are literally huge—linking
against them produces executables over a megabyte in size. Although there are
now Tcl and Tk shared libraries available, this is a design concern for some.

The basic paradigm presented by this approach is that one implements new Tcl
functions in C, and those Tcl functions can be called from a script which uses
your program as a Tcl/Tk interpreter—a replacement for wish for your
particular application.

My solution to this problem is perhaps less powerful, but also much more
straightforward from the point-of-view of the programmer. The idea is to fork
an instance of wish as a child process of your C program and talk to wish via
two pipes. wish, being a separate process, isn't linked directly to your C
program. It is used as a “server” for Tcl and Tk commands—you send Tcl/Tk
commands down the pipe to wish, which executes them (say, by creating
buttons, drawing graphics, whatever). You can have wish print strings to its
standard output in response to events (say, when the user clicks a button in the
wish window)--your C program can receive these strings from the read pipe and
act upon them.

This mechanism is more in line with the Unix philosophy of using small tools to
handle particular tasks. Your C program concerns itself with application-specific
processing, and simply writing Tcl/Tk commands to a pipe. wish concerns itself
with executing these commands.

This solution also gets around the problem of having a separate wish

replacement for each application that you write using Tcl and Tk. In this way, all
applications can execute the same copy of wish and communicate with it in
different ways.

Figure 1

This month, I'm going to demonstrate a “real world” application which uses
these concepts. My machine vision research at Cornell required me to visualize
three-dimensional point sets. (For the curious, the problem dealt with feature
classification: for each region in an image, five features were quantified, such as
average intensity, Canny edge density, and so forth. The problem is to classify
like regions by treating each region as a point in a five-dimensional feature
space, and group regions together using the k-nearest neighbor clustering
algorithm. I needed to take a 3D slice of this 5D space, assign a type to each
point, and view it in realtime by rotating, scaling and so forth. This would allow
me to verify that my features were clustering well.) Essentially, it's a simple
scientific visualization program for the task at hand; this was much easier to
write, using Tcl and Tk, than working with the large visualization packages that
were available. Additionally, I could customize it to taste.

This program reads in a datafile consisting of 3D coordinates, one per point.
Each point is also assigned a “type”, which is an integer from 0 to 6. Each point
is given a simple 3D-to-2D transformation and plotted with a different color,
based on the type. A wish canvas widget is used to do the plotting; wish

provides scrollbars to allow you to rotate and scale the dataset. Figure 1
(above) shows what the program looks like on a sample dataset of about 70
points.

Note that the original version of this program contained other features, such as
the option to display axes. I have trimmed down the code considerably in order
for it to fit here.

The first thing that we need is some way to start up a child process and talk to it
via two pipes. (Two pipes are used in this implementation: one for writing to the
child, and one for reading from it. In the end I found this simpler than
synchronizing the use of a single pipe.)

Here is the code, which I call child.c, to do this:

/* child.c */
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/time.h>
#include "child.h"
/* Exec the named cmd as a child process, returning
 * two pipes to communicate with the process, and
 * the child's process ID */
int start_child(char *cmd, FILE **readpipe, FILE
 **writepipe) {
 int childpid, pipe1[2], pipe2[2];
 if ((pipe(pipe1) < 0) || (pipe(pipe2) < 0)) {
 perror("pipe"); exit(-1);
}
 if ((childpid = vfork()) < 0) {
 perror("fork"); exit(-1);
 } else if (childpid > 0) { /* Parent. */
 close(pipe1[0]); close(pipe2[1]);
 /* Write to child is pipe1[1], read from
 * child is pipe2[0]. */
 *readpipe = fdopen(pipe2[0],"r");
 *writepipe=fdopen(pipe1[1],"w");
 setlinebuf(*writepipe);
 return childpid;
 } else { /* Child. */
 close(pipe1[1]); close(pipe2[0]);
 /* Read from parent is pipe1[0], write to
 * parent is pipe2[1]. */
 dup2(pipe1[0],0);
 dup2(pipe2[1],1);
 close(pipe1[0]); close(pipe2[1]);
 if (execlp(cmd,cmd,NULL) < 0)
 perror("execlp");
 /* Never returns */
} }

If you're familiar with Unix systems programming, this is a cookbook function.
We use vfork (fork would do as well) to start a child process, and in the child
execlp the command passed to the function. The command passed to
start_child must be on your path when using this function; also, you can't pass
command-line arguments to the command. It's easy to add the code to do this,
but we don't show this here for sake of brevity.

We use dup2 to connect the child's standard input to the write pipe, and the
child's standard output to the read pipe. In this way anything that the child
prints to stdout will show up on readpipe, and anything the parent writes to
writepipe will show up on the child's stdin. In the parent, we use fdopen to treat
the pipes as stdio FILE pointers, and setlinebuf to force the write pipe to be
flushed whenever we send a newline. This saves us the trouble of using fflush
each time we write strings to the pipe.

The header file, child.h, simply contains a prototype for start_child. It should be
included in any code which uses the above function.

#ifndef _mdw_CHILD_H
#define _mdw_CHILD_H
#include stdio.h
#include sys/types.h
#include sys/time.h
extern int start_child(char *cmd,
 FILE **readpipe, FILE **writepipe);
#endif

Now, we can write a C program to call start_child to execute wish as a child
process. We write Tcl/Tk commands to writepipe, and read responses back
from wish on readpipe. For example, we can have wish print a string to stdout
whenever a button is pressed or a scrollbar moved; our C program will see this
string and act upon it.

Here is the code, splot.c, which implements the 3D dataset viewer.

/* splot.c */
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <assert.h>
#include "child.h"
#define Z_DIST 400.0
#define SCALE_FACTOR 100.0
/* Factor for degrees to radians */
#define DEG2RAD 0.0174532
typedef struct _point_list {
 float x, y, z;
 int xd, yd;
 int type; /* Color */
 struct _point_list *next;
} point_list;
static char *colornames[] = { "red",
 "blue", "slateblue", "lightblue",
 "yellow", "orange",
 "gray90"
};
inline void matrix(float *a, float *b,
 float sinr, float cosr) {
 float tma;
 tma = *a;
 *a = (tma * cosr) - (*b * sinr);
 *b = (tma * sinr) + (*b * cosr);
}
void plot_points(FILE *read_from, FILE *write_to,
 point_list *list, char *canvas_name,
 float xr, float yr, float zr,
 float s, int half) {
point_list *node;
float cx, sx, cy, sy, cz, sz, mz;
float x,y,z;
xr *= DEG2RAD; yr *= DEG2RAD; zr *= DEG2RAD;
s /= SCALE_FACTOR;
cx = cos(xr); sx = sin(xr);
cy = cos(yr); sy = sin(yr);
cz = cos(zr); sz = sin(zr);
for (node = list; node != NULL;
 node = node->next) {
 /* Simple 3D transform with perspective */
 x = (node->x * s); y = (node->y * s);
 z = (node->z * s);
 matrix(&x,&y,sz,cz); matrix(&x,&z,sy,cy);
 matrix(&y,&z,sx,cx);
 mz = Z_DIST - z; if (mz < 3.4e-3) mz = 3.4e-3;
 x /= (mz * (1.0/Z_DIST));

 y /= (mz * (1.0/Z_DIST));
 node->xd = x+half; node->yd = y+half;
}
/* Erase points */
fprintf(write_to,"%s delete dots\n",canvas_name);
for (node = list; node != NULL;
 node = node->next) {
 /* Send canvas command to wish... create
 * an oval on the canvas for each point. */
 fprintf(write_to,
 "%s create oval %d %d %d %d " \
 "-fill %s -outline %s -tags dots\n",
 canvas_name,(node->xd)-3,(node->yd)-3,
 (node->xd)+3,(node->yd)+3,
 colornames[node->type],
 colornames[node->type]);
}
}
/* Create dataset list given filename to read */
point_list *load_points(char *fname) {
 FILE *fp;
 point_list *thelist = NULL, *node;
 assert (fp = fopen(fname,"r"));
 while (!feof(fp)) {
 assert (node =
 (point_list *)malloc(sizeof(point_list)));
 if (fscanf(fp,"%f %f %f %d",
 &(node->x),&(node->y),&(node->z),
 &(node->type)) == 4) {
 node->next = thelist;
 thelist = node;
 }
}
 fclose(fp);
 return thelist;
}
void main(int argc,char **argv) {
 FILE *read_from, *write_to;
 char result[80], canvas_name[5];
 float xr,yr,zr,s;
 int childpid, half;
 point_list *thelist;
 assert(argc == 2);
 thelist = load_points(argv[1]);
 childpid = start_child("wish",
 &read_from,&write_to);
 /* Tell wish to read the init script */
 fprintf(write_to,"source splot.tcl\n");
 while(1) {
 /* Blocks on read from wish */
 if (fgets(result,80,read_from) <= 0) exit(0);
 /* Exit if wish dies */
 /* Scan the string from wish */
 if ((sscanf(result,"p %s %f %f %f %f %d",
 canvas_name,&xr,&yr,&zr,
 &s,&half)) == 6)
 plot_points(read_from,write_to,thelist,
 else
 fprintf(stderr,"Bad command: %s\n",result);
 }
}

To build the above program (call it splot) you can use the command:

gcc -O2 -o splot splot.c child.c -lm

You should find splot to be fairly straightforward.

The first thing we do is read the data file named on the command line, using
the load_points function. This function reads a file which looks like the
following:

-50 -50 -50 0
 50 -50 -50 1
-50 50 -50 2
-50 -50 50 3
-50 50 50 4
 50 -50 50 5
 50 50 -50 1
 50 50 50 2

(This particular dataset defines a cube. The fourth column indicates the type, or
color, of each point.) load_points reads each line and returns the values as a
linked list of type point_list. Next, we use start_child to fire up wish. Anything
written to write_to will be read by wish as a Tcl/Tk command. First we send the
command source splot.tcl, which causes wish to read the script splot.tcl, shown
below.

splot.tcl
option add *Width 10
Called whenever we replot the points
proc replot val {
 puts stdout "p .c [.sf.rxscroll get] \
 [.sf.ryscroll get] \
 [.sf.rzscroll get] \
 [.sf.sscroll get] 250"
 flush stdout
}
Create canvas widget
canvas .c -width 500 -height 500 -bg black
pack .c -side top
Frame to hold scrollbars
frame .sf
pack .sf -expand 1 -fill x
Scrollbars for rotating view. Call replot whenever
we move them.
scale .sf.rxscroll -label "X Rotate" -length 500 \
 -from 0 -to 360 -command "replot" -orient horiz
scale .sf.ryscroll -label "Y Rotate" -length 500 \
 -from 0 -to 360 -command "replot" -orient horiz
scale .sf.rzscroll -label "Z Rotate" -length 500 \
 -from 0 -to 360 -command "replot" -orient horiz
Scrollbar for scaling view.
 scale .sf.sscroll -label "Scale" -length 500 \
 -from 1 -to 1000 -command "replot" -orient horiz \
 -showvalue 0
 .sf.sscroll set 500
Pack them into the frame
pack .sf.rxscroll .sf.ryscroll .sf.rzscroll \
 .sf.sscroll -side top
Frame for holding buttons
frame .bf
pack .bf -expand 1 -fill x
Exit button
button .bf.exit -text "Exit" -command {exit}
Reset button
button .bf.sreset -text "Reset" -command \
 {.sf.sscroll set 500; .sf.rxscroll set 0;
 .sf.ryscroll set 0; .sf.rzscroll set 0; replot 0}
Dump postscript
button .bf.psout -text "Dump postscript" -command \
 {.c postscript -colormode gray -file "ps.out"}
Pack buttons into frame
pack .bf.exit .bf.sreset .bf.psout -side left \
 -expand 1 -fill x
Call replot
replot 0

Nearly everything in this script was introduced in the December issue; if you
can't follow it, check the Tcl/Tk manpages for scrollbar, button, and so forth (or
order back issues).

After telling wish to read splot.tcl, the program goes into a read loop, using
fgets to read lines from the read pipe. This causes splot to sleep until there is
data on the pipe to be read. If you wanted your program to continue running
while waiting for output from wish, there are several alternatives. You could call
select to poll for pending data on the pipe, or you could set the pipe to use non-
blocking I/O (see the man page for fcntl). Any book on Unix systems
programming can help.

Whenever the scrollbars are moved, they call the replot function within
splot.tcl. This prints a line beginning with the letter “p”, followed by the name of
the canvas widget to draw to, the values of the rotation and scale scrollbars,
and the half-height of the canvas widget. This latter is used to center the image
in the canvas when it is drawn.

Note that we must flush stdout after writing a command to it. Otherwise the
commands would be buffered and not sent immediately to splot.

Once splot receives this line, it uses sscanf to parse the values and calls
plot_points. This function implements a very simple, but relatively fast, 3D
perspective transform, and applies it to each point. For each point, we send
wish a canvas command to create an oval object based upon its 2D location
after the transform. The variable half is used to center the point set on the
canvas. The colornames array is indexed with the type field of each point
structure to set the color.

There you have it! A complete visualization program in a few kilobytes of C and
Tcl code. Try it out: Enter the above code, compile it, and run the program as
splot cube.dat where cube.dat contains the dataset for the 3D cube given
above. You should be able to tumble and scale the cube in the wish window. On
my systems, this is remarkably fast—I can view datasets of several hundred
points with very little noticeable lag.

However, the idea here is to code all of the speed-critical parts of the program
in C, and allow wish to handle just the user interface. Remember that Tcl and Tk
passes everything around as scripts, so the tighter your Tcl code, the better. For
example, note how we do the degree-to-radian conversion and point scaling in
the C code. Using a Tcl expr command to do the same would require greater
overhead.

There are many possible extensions to this program. For example, you could
add buttons or additional scrollbars to splot.tcl which would cause other kinds
of commands to be printed to wishs stdout. The read loop in splot, for
example, could do a switch based on the first character of the line received

from wish and perform different actions based on that. As long as your C code
and Tcl script agree on the command format used, you're “cooking with gas”.

Please feel free to get in touch with me if you have questions about this code or
problems getting it to work for you. I suggest picking up a copy of John
Ousterhout's book Tcl and the Tk Toolkit, from Addison-Wesley, as well as a
book on Unix systems programming, which will cover the details of using pipes
for interprocess communication.

Until next time, happy hacking.

Matt Welsh (mdw@sunsite.unc.edu) Matt Welsh is a systems hacker and writer,
working with the Linux Documentation Project.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:mdw@sunsite.unc.edu
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/010/toc010.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Linux Conference at Open Systems World/FedUNIX'94

Belinda Frazier

Issue #10, February 1995

A remarkable conference with developers, support persons and resellers
results in a successful, information-packed event.

Open Systems World/FedUNIX'94 in Washington DC, in its sixth year, included
several conferences and classes such as the FedUnix Sessions, Motif/COSE
Users Conference, Novell AppWare Developers, SCO, Solaris, Windows NT, and
World Wide Web/Mosaic conferences. For the first time, on December 1 and 2,
Open Systems World offered a Linux International Users and Developers
Conference and a one-day Linux Tutorial.

The suggestion to include a Linux conference at Open Systems World was
made by Thomas Sterling, the Acting Director of CESDIS (Center of Excellence in
Space Data and Information Sciences). Alan Fedder, the director of Open
Systems World, made the choice to bring Linux to Open Systems World/
FedUNIX'94.

Linux Journal developed and sponsored the Linux conference with
immeasurable help from the speakers and other volunteers. One article cannot
begin to include all the information presented at the sessions and the tutorial;
future articles will include a more in-depth and technical report about each
session.

Approximately 50 people signed up for the conference and the tutorial, but
there were 67 people, including speakers, present during the one-day
conference. Included in the conference were several panel discussions
interlaced with presentations from experts on particular subjects.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Panel: What Should the Relationship Be Between Linux Resellers and the Linux Development

Community?

Robert Young of ACC Bookstore moderated four panel members: Eric
Youngdale and Donald Becker representing developers and Dan Irvin of Linux
Systems Laboratories and Mark Horton, a support person for InfoMagic,
representing resellers.

Eric Youngdale

Audience during panel discussion.

The opinions of all the panelists seemed to be that a cooperative relationship
existed, and would continue to exist, between developers and resellers. There
was mild dissension about Linux support when the moderator commented that
the user couldn't get, or shouldn't expect to get, Linux support for the low price
of a Linux distribution on CD; this was disputed by Mark Horton, support
person for InfoMagic, who replied that the InfoMagic CD-ROM included
support, and discussed the kind of support they were giving. Horton added
that, in general, the support wasn't getting abused/overused by the end user.

There was a feeling of good will between developers and resellers. This was
definitely a panel discussion, not a panel argument.

Panel: The Commercial Future of Linux

Moderated by Michael K. Johnson, the four panelists included Marc Ewing of
Red Hat Software, Mark Komarinski who writes the “System Administration”
column for Linux Journal, Ross Biro of Yggdrasil Computing and Mark Bolzern
of WorkGroup Solutions.

Mark Horton, Mark Komarinski and Phil Hughes

They discussed the current commercial products available for Linux, obstacles
to the development of commercial products, and how commercial vendors
might be persuaded to port their product to Linux and market it.

There are already about 50 commercial applications available for Linux,
including Tecplot, ISE Eiffel, Genplot, dBMan, ESQLFLEX and JustLogic Database
Manager. Although Linux users expect relatively inexpensive applications, it's
not profitable for commercial marketers to produce such low-cost applications
due to development and marketing costs. Distribution channels can be a
significant cost factor in inexpensive applications, as well as the cost of
advertising, which can, for example, run $3,500 for a one-time quarter page ad
in a popular Unix magazine.

https://secure2.linuxjournal.com/ljarchive/LJ/010/0048f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/010/0048f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/010/0048f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/010/0048f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/010/0048f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/010/0048f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/010/0048f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/010/0048f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/010/0048f4.jpg

Mark Bolzern said that while Linux is becoming “the Unix of choice”, Linux is not
yet trusted to be mission-critical. Bolzern anticipates, however, that over the
next year, Linux will be used in this capacity, such as the application currently in
use at Virginia Power for real-time data collection.

Ross Biro stressed the importance of hardware in the commercial future of
Linux. Except for Cyclades who makes serial boards, there aren't enough
hardware vendors making their products' specifications available for Linux
developers. There was general agreement among audience members, the
panel and the moderator about the need for more hardware support for Linux.
(However, it's rumored that half of Cyclades' domestic sales of one of their
serial boards is to Linux users.) Mark Komarinski noted that having most of the
kernel written in C (as it is now) will help with porting to hardware.

Some panelists and audience members added positive comments about the
two ports for the DEC alpha chip in progress: one being done by DEC, the other
by Linus Torvalds on a machine loaned to him by DEC.

Mark Bolzern talked about how his company was investing in its Linux
application now and pricing it far below the actual price the development and
marketing costs would allow for such a product, because they anticipate that
the future volume of sales to the Linux market will make this worth their
investment.

Bolzern advised that his company is paying a PR firm to promote Linux, with
the idea that increased sales of their product will follow as Flagship demos
become available on many more of the different Linux distributions on CD-
ROM. To help with the PR work, he asked for success stories, such as how Linux
users replaced their whole network with Linux systems, or did something with
Linux that could not be done any other way. Please e-mail to
mark@linuxmall.com

Dr. Greg Wettstein

Linux and NASA: Project Beowulf

Don Becker, who wrote most of the Ethernet drivers for Linux, is the principal
investigator on a new project at NASA called Beowulf, a cluster of Linux
processors, connected by parallel Ethernets. He discussed the project with an
enthralled audience.

Other Topics

After lunch, participants returned for an inspiring talk on How To Convince Your
Boss/Employer/Customer To Use Linux. Dr. Greg Wettstein from the Roger

mailto:mark@linuxmall.com
https://secure2.linuxjournal.com/ljarchive/LJ/010/0048f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/010/0048f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/010/0048f3.jpg

Maris Cancer Center (see Issue #5 of Linux Journal for his article about their
Linux system) discussed a planned, reasonable way to present Linux to
someone as a solution. He noted you should identify a specific problem that
Linux can fix, explain how Linux can fix it, emphasize Linux advantages (for
example, having source code available so you can make changes, its built-in
networking and its support community). Don't try to replace an entire working
system with Linux in one fell swoop—he emphasized, “Evolution, Not
Revolution”.

Other subjects in the conference were: WINE presented by Bob Amstadt, Linux
and The X Windows System presented by Przemek Klosowski and Linux and
iBCS2 Compatibility by Eric Youngdale. iBCS2 defines a common object
program format—a standard for PC Unix executables. The iBCS2 compatibility
libraries will allow existing PC Unix applications to run on a Linux platform.

Panel: Commercial Use of Linux

This panel discussion included Vance Petree, who is using Linux for real-time
data collection at Virginia Power; Russell Carter, Sandia Labs, using Linux for a
super workstation; Greg Wettstein, of the Roger Maris Cancer Center, who uses
Linux for a Patient Information System, written using Perl and Tcl/Tk; Donald
Becker, NASA, who is developing a cluster of Linux stations; Paul Tomblin
formerly of Gandalf, who is using Linux to build test tools for testing Gandalf's
networking products.

The audience at all the talks was attentive. The one-day tutorial included
experts speaking on their particular area of expertise and will be covered in
other articles. All in all, the conference felt like a big success with an amazing
amount of information presented.

Letters about the Conference

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/010/0048s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/010/toc010.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Linux in the Real World

Vance Petree

Issue #10, February 1995

Last month I described the considerable success Virginia Power has enjoyed
using Linux as the basis for a distributed data collection and archiving system.
Well, Time marches on, Linux marches on and one of the cardinal rules of the
Universe manifests itself: Anything that works tends to get used. A lot. And
frequently in unexpected ways. Linux, blissfully so, is no exception.

This article describes an exciting and important new system that is being built
on Virginia Power's Linux platform—a virtual SCADA (Supervisory Control and
Data Acquisition) system that will provide a cost-effective and flexible
alternative to traditional SCADA connectivity. Whereas last month's story was
an epic software adventure with a cast of several, this month's story is more of
a documentary of the new additions being added to our Linux house. As this is
being written, the frame is up, the roof is on, and the drywall is in place.
However, the joists are still visible and a good bit of plumbing has yet to be
added. Don't worry—with virtual hard hats in place and source code hammers
handy, we should be able to visualize the finished rooms easily. (Besides, as
you read this, the system is finished. Magazines are wonderful time machines.)

But first, for those of you who may have missed last month's article, a little
foundation on SCADA. As far as electric utilities are concerned, SCADA means
the retrieval of real-time analog and status data from various locations in the
service territory through remote terminal units (RTUs) installed in substations.
This information is obtained by central master computers, where it is stored,
analyzed, and presented to system operators who are responsible for
maintaining the integrity and reliability of the transmission and distribution
grid. When necessary, these operators can also remotely operate field devices
like line breakers and capacitor banks by sending control commands from the
master computer out to the RTUs. The master computers themselves even
contain feedback algorithms that automatically operate some devices based on
system conditions.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

At Virginia Power, the standard medium of communication between RTUs and
SCADA master computers is the dedicated serial line, often leased from the
local phone company. Several RTUs can be multi-dropped off a single dedicated
line (up to 16, a limitation imposed by our currently-used SCADA protocol), but
geographical limitations tend to prevent as much sharing of dedicated lines as
might be desirable. At the risk of over-simplifying, we can imagine one
dedicated line per RTU, giving us a traditional SCADA system something like
that shown in Figure 1 (see below).

The advantages of a dedicated connection are pretty obvious: constant data
availability and quick response when system conditions require a control action
of some sort (such as opening or closing a breaker or capacitor bank). In the
case of generation stations or large, high-voltage substations, any other type of
monitoring is unthinkable.

Yet, there are other likely monitoring sites, often in remote locations (the exact
technical phrase is “in the middle of nowhere”) which are not quite so high
profile (or high pressure). As a matter of fact, in a data acquisition sense, these
potential sites are downright prosaic: two or three analog points, a couple of
status points, and perhaps a single control point. Such modest monitoring
needs don't justify the constant watchfulness a dedicated serial line provides,
but the information does need to be retrieved; the control capabilities do need
to be available when needed.

Figure 1. Traditional SCADA Connectivity

Figure 2. A Hybrid SCADA System

Over the years some partial solutions have been implemented. In many cases,
intelligent electronic devices such as digital relays can monitor a small number
of analog and status devices and supply sufficient control capabilities. These
relays usually implement a simple serial-based protocol; installed in remote
sites along with modems, they can be interrogated from the SCADA master
computer centers using stand-alone PC packages, resulting in a hybrid SCADA
system as shown in Figure 2 (see above).

Such a hybrid system, while it may provide (in one form or another) all
necessary data and control capabilities, fails to provide the system operators
with a unified picture of the system they are operating. These folks have
enough responsibility on their hands without having to run through mental
gyrations along the lines of: “I'd better check the voltages in the Berry district.
Oops—the Cranberry substation has to be dialed, so I'll just walk over here to
the dialup PC and...oh, heck. Ted's using the PC to dial the Mineral Water
substation! Guess I'll try later...”

https://secure2.linuxjournal.com/ljarchive/LJ/010/1015f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/010/1015f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/010/1015f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/010/1015f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/010/1015f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/010/1015f2.jpg

Of course, a second dialup PC could be purchased and then a third and a fourth
and—Whoa—just a minute! What about those eminently reliable and flexible
Linux systems in each and every SCADA master computer center? (I know you
saw this coming.) Not only are those Linux systems handling averaged analog
data for the Asset Management database system, but they are also an
eminently reliable and flexible dialing subsystem (I blush to admit this, but
there you are) which can potentially talk to any type of device with a byte-
oriented protocol!

The dialing subsystem has no set limit on the number of phone lines it can
handle. If some means could be found to move data back and forth between
the SCADA master computers and the Linux systems, a more ideal SCADA
system could be constructed, as shown in Figure 3 (see below). This would
provide the system operators with a unified overview of their system—all
information would be present in the SCADA master computer. Some of it would
be retrieved via traditional means (dedicated lines) and the rest would be
obtained via dialup connections through the Linux systems.

Figure 3. Ideal, Unified SCADA System

As you can probably guess, this last approach is pretty much the one we're
taking, although a few sobering, but fortunately not insurmountable, realities of
the Real World have intruded:

• Our SCADA master computers are older machines which are approaching
the end of their digital careers. There are no spare processor cycles (or
memory bytes) for any kind of special programs to accommodate talking
with our Linux systems. In fact, the only feasible way to move data
between our Linux systems and our SCADA computers is by using the
same protocol as is used to communicate with our RTUs. Alas, this
protocol is more than a little antiquated and uses special-purpose
modems and encoding firmware.

• Dialing devices and retrieving data is all well and good, but sometimes
system operators need to monitor data points continuously for a certain
period of time.

• When operators perform control actions on remote devices, they need to
see immediate feedback to determine the success or failure of the
controls. Some actions can potentially affect several different data points,
and these need to be updated in real time until the operators are satisfied
as to the results of their control actions.

With regard to the first item, we are lucky enough to have available an RTU
platform for which our group develops field-resident applications, such as
closed-loop feedback controls and protocol translators for IEDs. This platform,

https://secure2.linuxjournal.com/ljarchive/LJ/010/1015f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/010/1015f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/010/1015f3.jpg

obviously, contains all of the requisite firmware and hardware for talking to our
SCADA master computers and is fully programmable (in C, thank goodness).
Stripped of all unnecessary peripheral hardware and loaded with a simple byte-
oriented protocol to talk to our Linux systems over a null modem cable, this
programmable RTU functions quite handily as a translator box: status and
analog data can be delivered from dialup devices to the SCADA computer, and
control requests can be delivered from the SCADA computer to the Linux
system for appropriate action. Of course, all the SCADA computer knows is that
it is scanning another RTU. The result is a slightly tempered ideal system as
shown in Figure 4.

Figure 4. Unified SCADA System, Real World Edition

At this point, I'd like to mention a few details of software carpentry which will
be important when we discuss the remaining items in our Real World reality
list. The database of the translator box (i.e., the stripped-down programmable
RTU which talks to the SCADA master computer) is organized as a set of arrays
of data structures—one array for status points, another for analog points, etc.
On the Linux side, a corresponding set of shared-memory partitions mirrors
the arrays of data structures in the translator box—one partition for status
points, another for analogs, etc. A daemon process in Linux talks to a
counterpart process on the translator box and ensures that the corresponding
instances of structure arrays remain consistent and up-to-date. This update
process runs every few seconds.

“Every few seconds” may sound a trifle vague in connection with real-time data
processing, but SCADA activity tends toward the leisurely side of real-time
processing; RTUs are scanned once every 2 to 30 seconds, contact closures
during control actions may be on the order of several hundred milliseconds to
a second or two. So even though Linux (like any standard Unix system) is not
strictly speaking a real-time system, it is more than responsive enough for the
scale of real-time processing with which we're concerned.

Well, now—the important points to remember are these: A change to data in a
shared memory segment in the Linux system will show up in the translator box,
where it will be picked up and scanned by the SCADA master computer,
eventually showing up on an operator display. Conversely, an operator-control
action will change data in the translator box, which will show up on the Linux
side and ring a (virtual) bell to cause some action to take place. From now on,
we'll ignore the translator box and pretend that the SCADA master computer
and Linux system are speaking directly to one another.

Which brings us, in a roundabout way, to the second Real World item. As noted
before, continuous data monitoring is one of the advantages of dedicated-line

https://secure2.linuxjournal.com/ljarchive/LJ/010/1015f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/010/1015f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/010/1015f4.jpg

connectivity. Simulating dedicated-line access with regular phone lines is
obviously why we're calling our new system a virtual SCADA system, and the
basic principle is just as obvious: when continuous monitoring is needed for a
dialup device, dial up and stay dialed up!

Of course, at any given time, it is only possible to continuously monitor as many
dial-up devices as there are available phone lines—but more phone lines can
always be added, should the need arise. We're starting with three dial-up serial
ports per Linux machine; time and experience will tell if we need to add more.
But some complications arise (as always) in the details. For example, what
happens if an operator starts continuously monitoring a dial-up device, gets
caught up in some other task, and forgets to release the device so the dial-up
line can be used for some other purpose? For that matter, how does the
operator start and stop monitoring a device in the first place?

To handle these details, each dial-up device has associated with it a number of
pseudo status, analog and control points—points which have nothing to do
with the data being monitored by the device, but rather are related to the
device itself:

• A timestamp analog point, showing how old the device data is (i.e., the last
time the device was called).

• A connection status point, showing whether the device is on-line or not.

• A dial-up control point. Toggling this control will cause the device to be
dialed and a connection established.

• A connect-time analog point, showing how many minutes remain before
the device is automatically disconnected.

• An add-connect-time control point. Toggling this point will add a fixed
number of minutes to the connect-time analog, keeping the device on-line
longer.

• A disconnect control point, to disconnect from the device immediately.

An additional pseudo-analog point reports the number of available dial-up
lines. This analog point is displayed, along with the above-described pseudo
points, for all dial-up devices on a SCADA master computer screen, allowing the
system operator easy, centralized management of all dial-up devices.

As an example, let's replay our hypothetical scenario from a few paragraphs
back: “I'd better check the voltages in the Berry district. Lessee—the Cranberry
substation has to be dialed, so I'll just poke this control point right here at the
comfort of my workstation...”

A little time passes while the device is dialed; the operator stays busy with other
things. Then the connect pseudo-status changes state and dings an alarm
beeper to attract the operator's attention: “Hmm...Cranberry's online now. I'd
better keep an eye on those voltages for half an hour or so. I'll poke this add-
time control a couple of times...There we go; now I've got 30 minutes of
connect time.”

Okay, so it's not a perfect solution; the operator still has to perform some
special actions to get his data, and has to know what's a dial-up device and
what's not. But all of these extra activities can be done at the operator's regular
workstation. And if dial-up devices are scheduled for periodic interrogation,
some of these special actions may not even be necessary: “I'd better check the
voltages in the Berry district. Say, it looks like the Cranberry substation was
interrogated just 10 minutes ago—recently enough that I can use those
values...”

As you might imagine, handling pseudo-points and connection timers involves
much delightful software development on the Linux side, some of which is still
in the blueprint stages and some needing only a final coat of symbol-stripping
paint. The solution to the final item in our list of Real World realities—providing
operator controls to dial-up devices—is still, pretty much, in the blueprint stage,
but we can at least describe the basic ideas.

The main problem with dial-up device controls is providing sufficient
generalization so that control actions are handled in a consistent manner. The
standard method for controlling SCADA devices is a three-step select-verify-
execute procedure: select the point to be controlled, verify the selection
(usually by having the remote device echo the selection back to the master
computer), and execute the desired control after a final go-ahead by the
operator. The result of a control action is usually determined by monitoring an
associated status point or one or more analog points.

Unfortunately, many of the intelligent end devices we are handling using virtual
SCADA don't have clear- cut sequences of steps for performing control actions.
One device, for example, uses an ASCII-encoded bitmap to select the device
and execute the control, all in one step—so much for verification. Another
device implements the usual 3-step procedure but with the added onus of
sequence numbers to ensure no more than one outstanding control action at a
time (actually, not at all a bad idea, but incompatible with our existing SCADA
protocol). And there is the obvious prerequisite, that the device to be controlled
must be on-line before any control is attempted.

A little poor-man's object-orientation seems to be in order, so we have
abstracted the basic elements of a control request and, along the way, added a

few more pseudo-points per dial-up device (these additional pseudo-points are
displayed on the same screen as all the other device pseudo-points):

• A connection-in-progress status point, which toggles true if the associated
device is in the process of being dialed.

• A control-in-progress status point, which is true if a control is being
performed on the associated device.

• A control-success status point, showing success or failure of the last
control attempted.

The operator can perform a control on any dial-up device control point, just as
he does with any other (dedicated-line) control point, with the understanding
that his control action is actually a request for the control to be selected,
verified, and executed on his behalf at some time in the (near) future. This
distinction may seem cosmetic, but it is actually important, from an operational
point of view.

Here's the general sequence of events: The operator controls a dial-up device
control point (using the usual 3-step procedure, since he is communicating his
request to the Linux system using the regular SCADA protocol), which toggles a
database point in the Linux system, alerting the system that there's work to be
done. The system sets the control-in-progress status point to ensure that only
one control request per device is outstanding at a time. Since the number of
separate control points per dial-up device is small, this restriction should not
pose a problem.

If the device to be controlled is not online, it is dialed and a connection is
established (the connection-in-progress status point allows monitoring of this
process). If the device is already on-line, a set amount of time is added to its
connect-time analog to allow for completion of the control request.

Device-specific software, knowing all the secrets for successful control actions
on the device, performs the control requested by the operator, and reports the
general success or failure through the control-success status point. The device
remains on-line until its connect-time analog counts down to zero, allowing the
operator an opportunity to observe any associated analogs or status points to
verify that the control action has the desired effect.

Well, we've just about reached the end of our tour of this latest addition to our
network of Linux systems, and I hope you've gotten a good idea of what the
finished rooms will look like and the wonderful view we'll have of the increased
efficiency and reliable operation of our SCADA systems. But the most
remarkable feature of this new system hasn't yet been mentioned, although it
has been implied in everything discussed so far.

Linux has become an integral, accepted part of the toolkit we use to craft
solutions for the division and planning personnel who come to our group with
problems and needs. During the design of our virtual SCADA system, no one
suggested using some “other” operating system platform or questioned
whether Linux would have enough horsepower to handle the new demands
that would be placed upon it. A year of stellar, faultless Linux performance as
our data-collection front ends has turned skepticism to happy acceptance and
transformed the phrase “that PC Unix” to “our Linux systems.” Folks I've never
met who work in our company, call up with Linux questions because they've
heard good things about our systems.

Oh, we still have a skeptic or two—I'm sure we always will. But the surest way
I've found to get them off my back, after they've expounded on the next release
of “Ontario” or “Pookeepsie 96” or “Shangra-La”, is to cough politely and reply,
“Well, Linux does that right now. And it works. Right now. See?”

The ones that come back, I tell `em how to get a good CD-ROM distribution.
One more happy Linuxer can't hurt!

Vance Petree (vpetreeinfi.net) Although he began adulthood as a music
composition major, Vance soon found computers a more reliable means of
obtaining groceries. He has been a programmer for Virginia Power for the past
15 years, and lives with his wife (a tapestry weaver—which is a lot like
programming, only slower) and two conversant cats in a 70-year-old townhouse
deep in the genteel stew of urban Richmond, VA.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:vpetreeinfi.net
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/010/toc010.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Report on COMDEX '94

Belinda Frazier

Issue #10, February 1995

>First-time Linux representation, interesting application demonstrations, a vast
array of materials and excited users—all contributed to a productive Comdex
show.

Braving the crowds last November, I joined over 200,000 participants at
COMDEX in Las Vegas, Nevada. The largest computer trade show in the world,
COMDEX offered 2,200 exhibitors plying their new computer, multimedia and/
or communication products at numerous convention sites and on multiple
convention floors.

As if that wasn't enough, a PowerPC Pavilion brought together dozens of other
exhibitors running their applications on PowerPC systems.

Surprisingly, given the almost overwhelming amount of information offered,
there usually isn't much about Unix at COMDEX. This year, however, I was very
pleased to find Linux represented at two booths at the show. Both Yggdrasil
Computing, Inc., and Morse Telecommunication had Linux in their companies'
banner.

I spent time at both of these booths to see first-hand the responses people had
to Linux. The two most evident responses were easily categorized into the
skeptics and the fanatics. The fanatics obviously knew about—and used—Linux.
The skeptics were usually those who had barely tried Unix and didn't like it—
but even so, they had trouble believing it could be free. I saw a few skeptics
walk away with information about Linux products.

Dan Quinlan, Adam Richter and Corrine Butleau staffed the Yggdrasil
Computing Booth at the Sands Expo and Convention Center. They
demonstrated various applications on Linux, including the Microsoft Windows
Solitaire game running under WINE (the Windows Emulator for Linux). They

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

also had the company's latest version of The Linux Bible, The GNU Testament,
available for perusal and were also giving away copies of Linux Journal.

Adam said that he thought the most important news that week was that Linux
was moving to ELF (Executable Loadable Format) as the binary format. ELF is
the standard format used by most PC Unix implementations, such as SVR4.
Yggdrasil's Winter, 1995, release of Plug & Play, which will be available by the
time you read this, will have ELF binaries.

ACC Bookstore and Morse Telecommunication shared a booth, staffed by
Michael Johnston, Robert Young and Pat Volkerding. Pat, who was interviewed
in Linux Journal Issue #2, created the Slackware distribution which is being sold
by many vendors. Morse Telecommunication produces Slackware Professional,
a Linux package sold in many retail outlets.

ACC Bookstore and Morse had many products and publications about Linux
displayed on their table and shelves, including a system demonstrating Abacus
Software's MacEmulator for Linux, which had just been announced three days
before COMDEX opened.

They also had flyers from other Linux vendors such as WorkGroup Solutions.
Mark Bolzern of WorkGroup Solutions was often seen at ACC and Morse's
booth as well. WorkGroup Solutions distributes Flagship, which was written by
a German company, multisoft GmBH.

ACC Bookstore and Morse Telecommunication's booth. Pictured are Michael Johnston and
Patrick Volkerding

Flagship is a compiler that compiles XBase code; it's similar to the MS-DOS
product Clipper, but it runs on Linux. This means that you can port MS-DOS
XBase applications to Linux.

Walnut Creek was also at Comdex showing their many CD-ROMs. When asked
about how well Linux CD-ROMs were selling, one representative said, “Well,
COMDEX is like being invaded by the Huns.” I think that meant Linux was not
their best-selling product at the convention.

Andrew Grove, President and CEO of Intel Corporation, was one of the keynote
speakers. Mr. Grove started with a score card of hits and misses based upon
his speech and predictions at COMDEX three years ago. He gave himself hits for
the rise of the PCI Local Bus, color notebooks, multimedia, messaging. He gave
himself misses for his predictions on collaborative work with multimedia
messaging and pen-based and wireless notebooks. (However, he wryly noted,
“You can still draw a smiley face on a pen-based notebook.”)

Mr. Grove noted he had underestimated the processor performance vamp—
there has been a 13-fold change in three years in terms of cost-effectiveness of
processors. He also said that when he last spoke at COMDEX three years
before, he had no idea how big the growth of the home personal computer
would be, nor how much progress would have been made on the Information
Highway.

I wonder what Andrew Grove will say in a few years about the growth of Linux
on personal computers.

A customer picking up Linux Journal

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/010/toc010.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

What Your DOS Manual Doesn't Tell You about Linux

Liam Greenwood

Issue #10, February 1995

A guide to discovering documentation (and other valuables) on your Linux
system.

So, you decided to see what all the fuss was about. You installed Linux, logged
in to your own Unix machine, and are ready to race. Hmmm, strange prompt:

george:~#

It's not quite C:>: but it can't be that hard. You put in a floppy disk and type:

george:~# dir a:
ls: a:: No such file or directory

The commands and output of commands in this article assume you are using
the bash shell. Also, you do not type in the prompt.

“I wonder how you look at floppies?” You type help at the prompt and get a
screen full of cryptic command templates. Nothing on dir though. Ah! There in
the second column it is—dirs. “No problem,” you think, as you confidently type:

george:~# dirs a:

...and get dirs: unknown option: a:. “Oh, that's right,” you mutter, “Unix doesn't
have a: and c: drives. help again, and let's have a closer look. Here we go, it
says: help [pattern...] so you enter:

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

george:~# help dir
dirs: dirs [-l]
 Display the list of currently remembered
 directories. Directories find their way
 onto the list with the `pushd' command;
 you can get back up through the list with
 the `popd' command.
 The -l flag specifies that `dirs' should not
 print shorthand versions of directories which
 are relative to your home directory. This
 means that `~/bin' might be displayed as
 /homes/bfox/bin

Getting a bit puzzled now you try:

george:~# dir
total 1
lrwxrwxrwx 1 root root 8 Aug 2 21:39 INSTALL -> /var/adm/
lrwxrwxrwx 1 root root 14 Aug 2 21:39 linux -> /usr/src/linux/
drwx------ 2 root root 1024 Aug 3 18:05 mail/

Phew, something works. What does it all mean though? Different colours,
arrows, your login name is there twice on each file and you still don't know how
to list what's on a floppy. In fact, you're starting to wonder why you thought this
Linux thing was a good idea in the first place.

Help Is on the Way

If Linux is your first foray into the Unix world then you're at a bit of a
disadvantage compared to starting out on a commercial system: no manuals.
Fortunately, Unix has a long history of carrying its documentation on-line. In
fact, the first system I worked on, about eleven years ago, normally shipped
with only the vendor-specific manuals in printed form and the majority of the
documentation on-line. So here's a few tips on how to discover what you need
to know without a set of printed manuals. A whistle-stop tour of man, apropos,
whatis, more or less, ls and find. Where to look for information on Usenet other
than comp.os.linux.help and where to look for information off Usenet, as well
as in Linux Journal.

First stop is the helpful trinity of man, apropos and whatis. The most essential
of these three is man. man is your access to the on-line manual set. apropos is
a keywork searching tool for the manual set, and whatis is a quick reference to
commands. man also has the ability to do both the keyword searching of
apropos and the quick reference of whatis.

The best way to start is to try typing:

george:~# man man

which is asking the on-line manual for the manual page on itself. The header of
the ”man“ man page has ”man(1)“ followed by a NAME entry, a SYNOPSIS entry
and then the description. The NAME entry gives the name and a short

description of the things explained on this man page. The SYNOPSIS is a
template for running the command which shows the required format, the
options, and the parameters. The DESCRIPTION entry is the detailed description
of the command, its calling conventions, options, parameters, and other details.
Near the end of the man page are two very useful sections, the SEE ALSO and
where appropriate the FILES section. The SEE ALSO section lists other man
pages which are relevant to the one you have just looked up. The FILES section
lists files which are relevant to the command you are looking at, for instance,
configuration files.

There are three very useful options to the man program. They are -a, -f, and -k.
The -a option tells the man program to not stop looking for pages at the first
one it finds, but to scan all the man page sections and present you with all the
relevant pages. You're probably now wondering what those sections are and
why they exist. The man pages themselves can help us out with that one.

If you recall, when you typed man man the resulting man page was headed
”man(1)“. This means the page was found in section one of the manual. If you
now enter:

george:~# man -a man

you will be presented with the ”man(1)“ man page again. Now type q to leave
the man page viewer. Instead of being put back to the prompt, you will be given
another man page to view, which is headed ”man(7)“. This is a description of
the way to create man pages and is from section seven. On about the third
screen of ”man(7)“ is a list of the various man sections. If you knew that you just
wanted to see the page on how to create man pages, you could bypass the
”man(1)“ page by entering:

george:~# man 7 man

If you remember the name of a command but can't remember what it does, the
whatis command (or man -f) is what you need. These commands search a
special ”whatis“ database and return a list of matches with a short description.

george:~# whatis man
man (1) - Format and display the on-line manual pages
man (7) - Macros to format man pages
man.config (5) - Configuration data for man

In this case, it also got us a pointer to another man-related man page on which
we can do a man man.config or man 5 man.config.

Often you'll know what you want to do, but won't know the command name. To
do a keyword search of the ”whatis“ database, you can use either the apropos
command or man -k. For example, to find out how to copy a file, neither man

copy nor whatis copy are of any help. Using either apropos copy or man -k copy
returns 22 lines of matches, including the entry cp(1) - Copy files.

Another valuable way of finding information is to ”cruise the filesystem“. The
tools you need are cd, ls, and either more or less. Another valuable little helper
is the command find.

What do I mean by ”cruise the filesystem“? It just means to look through the
filesystem for interesting files, reading any text files, and looking at the man
pages for any executable files. You use ls to list the files and directories, cd to
move into interesting looking directories, and the pager programs more and
less to read any text files. So on my system I can cd /usr and one of the
directories which I see in the ls output is called doc. When I do an ls doc, I see
one of the directories is faq. I do an ls doc/faq and see one of the directories is
called howto. An ls of the howto directory shows me that it's got a collection of
Linux HOWTO documents. I cd /usr/doc/faq/howto and then I can, for example,
more README or less Mail-HOWTO.

What about executables? Let's take an example a friend of mine had. He was
having a look around when an ls /bin came up with a program called dialog.
Thinking it looked interesting, he did a man dialog and found it was a program
for creating dialog boxes for use in shell scripts. About three days later a Linux
Journal arrived with an article on dialog boxes. I still want to know why my copy
of man doesn't automatically cause Linux Journal articles to be written.

One important caveat about cruising a filesystem: don't randomly execute
programs. Murphy's Law indicates that only data that's important and hard to
replace will be lost when you try some innocuous-looking program. Find and
read the man pages before trying the program. If there are no man pages, then
look for other documentation. Use the find command to help you search for
more information; it is a powerful and flexible command, allowing you to do
searches through a filesystem on a number of file attributes. I'll just give you an
example of searching by name. I can look for any filenames with the string
readme in them and print the names on my screen with the following
construct:

george:~# find / -iname `*readme*' -print

where find is the command, / is the place to start the search, -iname means do
a case-insensitive filename search on the following string (*readme*) and -print

means to display the result. If I were doing a case- sensitive search, I would
replace -iname with -name.

Why don't I just do all my looking with the find command? You build a better
roadmap of your system by walking the directories, and you find things you

didn't know to search for. How can you get find to search for the HOWTO
documents when you don't know such documents exist?

A warning on the Linux documentation: all the documentation is provided by
volunteer efforts and, since many people find writing documentation not as
much fun as writing programs, inevitably there will be times when the on-line
documentation isn't complete. There may be a program without a man page or
other documentation. The documentation may be out of date, or there may be
inaccuracies. So be prepared for some inconsistencies. Another thing to be
aware of is that the placement of files in a distribution is entirely up to the
person creating the distribution. Where they think the files should be, which is
how it's documented in the man page, may not be where they actually are in
your distribution. The name of the file is unlikely to have been changed, so it's
simple enough to use find to resolve such differences.

Programs for which there are no man pages aren't so simple. However, Linux is
a type of Unix. There are many books published on Unix and most of those
would be relevant to a Linux system. There are books on learning to use Unix,
Unix reference books, and Unix system administration books from publishers
such as O'Reilly and Associates, The Waite Group, and others. In addition I
would strongly recommend one of SSC's Unix command summaries. These
summaries are like having your ”whatis" database extended to include both the
synopsis and the options from the man page and to have them printed out.

If you have access to Usenet news, then you probably already look at one or
more of the Linux discussion groups. In addition to those groups, there are
many other Unix discussion groups in the comp.unix hierarchy. There are
regular postings to news.answers of many Unix FAQs (Frequently Asked
Questions); in particular, there is a Unix books FAQ. There are newsgroups on
news readers (news.software.readers), on editors (comp.editors, comp.emacs),
on mail (comp.mail hierarchy), and many other topics, so don't limit yourself to
just the comp.os.linux groups.

Oh, and if you still can't get that directory listing on your A: drive, here's a hint:
man mount.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/010/toc010.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

What's GNU?

Arnold Robbins

Issue #10, February 1995

This month's column discusses RCS, the Revision Control System.

What is RCS? RCS is the Revision Control System. Its job is to manage the
process of revising and updating files. It can and should be used for program
text and documentation, as well as for any other files that are revised on a
frequent basis. RCS allows you to retrieve earlier versions of files, while keeping
a log of what changes were made, who made them, and why. RCS makes it easy
to compare any two versions of a file, and provides a mechanism for merging
changes from two different development “branches” of a source file.

RCS was originally written by Dr. Walter F. Tichy, at Purdue University.
Beginning in 1983, it received wide-spread use in the Unix community with its
release as part of the User Contributed Software in 4.2BSD. It was described in
an article in “Software—Practice And Experience” in July 1985.

Why Use RCS?

RCS provides a safety net for the software developer. When developing, fixing,
and improving a program, changes are inevitable. By saving a stable version of
your file in RCS, you can later return to a known state if a set of changes does
not work out.

If more than one person is working on the same file, RCS allows you to “lock” a
file, so that only one person will be allowed to make changes. Other people can
still use the file, e.g., for compiling.

Besides keeping track of what changes were made to a file, RCS tracks who
made the change and when. RCS also files a log message describing the
change. This makes it easy to figure out who broke the program when the fatal
bug is finally isolated.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Using RCS

The user interface is intentionally quite simple, consisting primarily of two
commands, ci and co. To start with, make a directory to hold the program and
cd into it. Then make a directory named RCS. Although not required, this is the
cleanest way to do it; all RCS files will be kept in the RCS subdirectory. We'll also
create the first version of the program.

$ mkdir hello
$ cd hello
$ mkdir RCS
$ cat > hello.c # editors are for wimps! :-)
#include <stdio.h>
int main(void)
{
 printf("hello, world\n");
}
^D
$ ls -l hello.c
-rw-r--r-- 1 arnold 66 Nov 5 22:33 hello.c

We now have a C source file that is ready to go. When compiled and run, it
prints the well-known, friendly greeting beloved by C programmers the world
over.

After making sure it compiles, the first thing to do is “check in” the program
with RCS. This is accomplished with ci.

$ ci hello.c
RCS/hello.c,v <-- hello.c
enter description, terminated with single `.' or end of file:
NOTE: This is NOT the log message!
> world famous C program that prints a friendly
message.
> .
initial revision: 1.1
done
$ ls
RCS

The first time a file is checked in, RCS wants a description of just what the file is.
It reminds us that this is not the log message, thus, something like “initial
revision” would be inappropriate here. The > is the prompt for information.
Also note that the original file is removed. RCS has the file safely stored in the
RCS file hello.c,v in the RCS directory.

Checking Files Out

Well, a file that we can't compile isn't of much use, so the next thing to do is get
a copy so that we can actually compile the program and use it. This is done with
co, which stands for “check out”.

$ co hello.c
RCS/hello.c,v -> hello.c
revision 1.1
done
$ ls -l hello.c

-r--r--r-- 1 arnold 66 Nov 5 22:43 hello.c
$ gcc hello.c -O -o hello; ./hello
hello, world

Note that the file is returned to us, but with read-only permissions. We are thus
allowed to use the file, but not change it. In normal use, for instance, to build a
whole source tree to install software, you would check out the files read-only,
compile the programs, and then remove the source files.

Locking Files

What about when you want to change a file? Programs do evolve, so how do
you get to the next revision? The first thing to do is to check out the file, but
with a lock on the file. The lock says that you, and only you, are allowed to
check in a new revision of the file. This is necessary if more than one person will
be working with the source file, so that two people don't trash each other's
work.

$ co -l hello.c
RCS/hello.c,v -> hello.c
 revision 1.1 (locked)
done
$ ls -l hello.c
-rw-r--r-- 1 arnold 66 Nov 5 22:51 hello.c

This checks out the file, and locks it. Note that the permissions now allow
writing to the file. We can edit the file, and make our changes to it.

$ sam hello.c # a nifty editor,
watch for a future column on it.
$ cat hello.c
#include <stdio.h>
#include <string.h>
int main(int argc, char **argv)
{
 if (argc > 1 && strcmp(argv[1], "-advice") == 0) {
 printf("Don't Panic!\n");
 exit(42);
 }
 printf("hello, world\n");
 exit(0);
}
$ gcc -O hello.c -o hello
$./hello -advice
Don't Panic!
$./hello
hello, world

Our program now has a new option, -advice, that prints a friendly piece of
advice and exits with a well known, special value. The default behavior remains
unchanged, except that exit is now used for the normal case, as well.

We can now check in the new version to RCS. Assuming that we will want to do
further work on the file, ci also allows us to use the -l option. With this option, ci

will perform the check-in and automatically do a co -l for us, so that we can
continue to work on the file.

$ ci -l hello.c
RCS/hello.c,v <- hello.c
new revision: 1.2; previous revision: 1.1
enter log message, terminated with single `.' or end of file:
> Added -advice option, and made regular case use exit.
> .
done
$ ls -l hello.c
-rw-r--r-- 1 arnold 208 Nov 5 22:54 hello.c

Here we see where the log message is entered. Log messages should be
relatively brief, describing what was changed and why. In a commercial
environment, you might enter the bug number associated with a particular fix
into the log, as well. We also see that the file is still available for further editing
(permissions -rw-r--r--).

Comparing Versions of a File

You can compare any two versions of a file using the rcsdiff command. This
command accepts all the options that the regular diff command does.
However, it usurps the -r option for providing revision numbers. By default,
rcsdiff compares the current version of the working file with the most recently
checked-in version. With one -r option, it compares the current file against the
specified previous version. You can supply two instances of the -r option to
make it compare two different revisions, neither of which is the current version.
Here's an example of the default (and most common) case:

$ rcsdiff -c hello.c
==
RCS file: RCS/hello.c,v
retrieving revision 1.1
diff -c -r1.1 hello.c
*** 1.1 1994/11/06 03:36:45
--- hello.c 1994/11/06 03:54:49

*** 1,6 ****
 #include <stdio.h>
! int main(void)
 {
 printf("hello, world\n");
--- 1,12 ----
 #include <stdio.h>
+ #include <string.h>
! int main(int argc, char **argv)
 {
+ if (argc > 1 && strcmp(argv[1], "-advice") == 0) {
+ printf("Don't Panic!\n");
+ exit(42);
+ }
 printf("hello, world\n");
+ exit(0);
 }

This generates a “context diff”, showing the surrounding context of what was
changed, not just the changes themselves. The lines marked with ! indicate a
changed line from the old to the new version, and the lines marked with +
indicate lines that were added.

The rcsdiff program makes it easy to generate updates that can be applied with
patch. When a program is finished, simply check in all the files that make it up
with a new, higher level revision number, such as 3.0. Then, for the next
release, run rcsdiff against revision 3.0 for all files.

$ rcsdiff -c -r3.0 RCS/* > myprog-3.0-4.0.patch 2>&1

(This doesn't catch the case of brand new files added in 4.0, or deleted files that
were in 3.0, but you get the idea.)

As a side note, in order to build and install the RCS software, you need to have
the GNU version of diff. Linux systems have this already. If you don't have GNU
diff, you should get it anyway, since it is very full- featured and noticeably faster
than the standard Unix version of diff.

Automatically Tracking Interesting Information

It is often useful to be able to look at the contents of a source file and tell what
version of the file it is. RCS allows you to do this by performing “keyword
substitutions” on the contents of your file when it is checked out. There are a
large number of these keywords; the co man page documents them in full. The
most common ones are Id and Log.

The Id keyword is replaced with text describing the filename, revision, date
and time of checkout, the author, and the state (e.g., Exp, for experimental).
Usually, this is embedded in a C string constant so that a binary, generated
from the file, can be identified with the ident command.

The Log keyword is replaced with the text of the most recent log message.
This is usually placed inside a comment, so that the source file is self-
documenting, showing what was changed and when. This is useful, but should
be used with caution: if a file is changed frequently, this log can grow quite a
lot.

We'll now add the keywords and show the state of the file, both before and
after checking in the changed version.

$ sam hello.c
$ cat hello.c
#include <stdio.h>
#include <string.h>
static const char rcsid[] = "Id";
/*
 * Log
 */
int main(int argc, char **argv)
{
 if (argc > 1 && strcmp(argv[1], "-advice") == 0) {
 printf("Don't Panic!\n");
 exit(42);
}

 printf("hello, world\n");
 exit(0);
}
$ ci -l hello.c
RCS/hello.c,v <- hello.c
new revision: 1.3; previous revision: 1.2
enter log message, terminated with single `.' or end of file:
>> add id and log keywords.
>> .
done
$ cat hello.c
#include <stdio.h>
#include <string.h>
static const char rcsid[] = "$Id: hello.c,v 1.3 1994/11/07 03:41:32
arnold Exp arnold $";
/*
 * $Log: hello.c,v $
 * Revision 1.3 1994/11/07 03:41:32 arnold
 * add id and log keywords.
 *
 */
int main(int argc, char **argv)
{
 if (argc > 1 && strcmp(argv[1], "-advice") == 0) {
 printf("Don't Panic!\n");
 exit(42);
}
 printf("hello, world\n");
 exit(0);
}

We see that RCS has filled in the information for both keywords. When the
program is compiled, the ident command will give us information about all the
files used to compile the program that have RCS ids in them.

$ gcc -O hello.c -o hello
$ ident hello
hello:
 $Id: hello.c,v 1.3 1994/11/07 03:41:32 arnold Exp arnold $

Miscellaneous RCS Commands

You can do just about everything you need to with ci, co, and rcsdiff. There are
a few other commands that come with RCS that are also of interest.

The rcs command is used for changing the state of RCS files. In particular, it can
be used to lock a file that is not locked or to break someone else's lock on an
RCS file. This latter operation is perilous and should only be done in an
emergency. There are a number of other operations that rcs can perform; see
the man page for details.

It is possible to have “branches” off the main line (or “trunk”) of development.
For instance, assume that the released version of hello.c is 2.6 and that version
2.7 will be the next released version. Programmer Mary is writing version 2.7,
while programmer Joe has to maintain version 2.6. Normally, Joe would start a
separate branch off the main development trunk, generating versions 2.6.1.1,
2.6.1.2, and so on. RCS can maintain an arbitrary number of branches off the
main trunk, as well as branches off the branches. However, as you might
imagine, keeping track of many levels of branching can become confusing.

At some point, Mary will want to make sure that all of Joe's fixes are
incorporated into her version of hello.c; she would do this using rcsmerge.
(rcsmerge uses a separate program that also comes with RCS, named merge,
which does the actual work of merging the files.)

Finally, the rlog command will print out all the log messages for a particular
source file. This allows you to see the complete change history of a file.

$ rlog hello.c
RCS file: RCS/hello.c,v
Working file: hello.c
head: 1.3
branch:
locks: strict
 arnold: 1.3
access list:
symbolic names:
comment leader: " * "
keyword substitution: kv
total revisions: 3; selected revisions: 3
description:
world famous C program that prints a friendly message.

revision 1.3 locked by: arnold;
date: 1994/11/07 03:41:32; author: arnold; state: Exp; lines: +6 -0
add id and log keywords.

 revision 1.2
date: 1994/11/07 03:40:21; author: arnold; state: Exp; lines: +7 -1
Added -advice option, and made regular case use exit.

revision 1.1
date: 1994/11/07 03:38:50; author: arnold; state: Exp;
Initial revision
 ==

Most of the initial stuff that rlog prints out is explained in the RCS man pages.
Of interest to us are the description and log message parts of the output, which
tell us what the program is, what changes were made, by whom, and when.
Interestingly, the timestamps are in UTC, not local time. This is so that
developers in different time zones can collaborate without getting
discrepancies in their Id strings.

Problems RCS Does Not Solve

The main problem that RCS does not solve is having multiple people working
on a file at the same time and the larger issues of release management, i.e.,
making sure that the release is complete and up to date.

A separate software suite is available for this purpose: cvs, the Concurrent
Version System. From the README file in the cvs distribution:

cvs is a front end to the rcs(1) revision control system
which extends the notion of revision control from a
collection of files in a single directory to a hierarchical
collection of directories consisting of revision-
controlled files. These directories and files can be
combined together to form a software release. cvs

provides the functions necessary to manage these
software releases and to control the concurrent
editing of source files among multiple software
developers.

You can get cvs from ftp.gnu.ai.mit.edu in /pub/gnu. At the time of this writing,
the current version is cvs-1.3.tar.gz. By the time you read this, CVS 1.4 may be
out, so look for cvs-1.4.tar.gz, and retrieve that version if it is there.

Summary

RCS provides complete, flexible revision control in an easy-to-use package. Like
make, RCS is a software suite that any serious programmer needs to learn and
use.

More Info

Acknowledgements

Thanks to Paul Eggert for reviewing this article. His comments were very useful;
several of them were incorporated almost verbatim. Thanks also to Miriam
Robbins for forcing me to run spell.

Arnold Robbins is a professional programmer and semi-professional author. He
has been doing volunteer work for the GNU project since 1987 and working
with Unix and Unix-like systems since 1981.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/010/2888s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/010/toc010.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Letters to the Editor

Various

Issue #10, February 1995

Readers sound off.

Modem woes

I thoroughly enjoy Linux Journal, but (better yet) I thoroughly like Linux! I have
come across a problem, however, that I am having difficulty correcting.

My system at home is a Packard Bell Legend 1170. Yes, I'm aware of all the
jokes/stories/ etc.,...we'll skip that part! I like my computer and it serves my
purposes fine for now.

I have upgraded it to 8mb of RAM, added a PowerGraph video card and most
recently installed a new Zoom modem to replace the built-in 2400 that PB uses.
During the installation, I discovered that the original built-in modem could not
be physically removed, but COM PORT 1 could be disabled. Therefore I disabled
COM PORT 1 and set my new modem up for COM PORT 3. The comm program
in the DOS partition of my computer works fine with the modem (14.4k beats
2400bd all to pieces!).

The question I have been struggling with is how do I tell my Linux partition to
go to COM PORT 3? I've checked with other Linux users and the Linux manual
and the common response (other than “replace the computer” or “sue PB”) is
that I should create a cua3 in dev. But the problem is there is already a cua0, 1,
2, and 3; so, obviously, the problem is not creating it, but making the
connection somehow.

I am sure this is a relatively easy problem that someone more familiar with
Linux and more technically proficient than I, can solve easily. I certainly would
appreciate any information you may be able to provide me, even if it's a page
number and a note to RTM! Great—I'll find it and read it!

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Thank you and keep up the good work with the magazine. It is one of the very
few that seems to consider those of us who are not computer wizards by
publishing articles that are easily read and understood even by a novice such as
myself. The series on Andrew was great and I find it does indeed live up to all
the claims!

Thanks again.Donald R. Barnhart (barney) don.barnhart@bbs.amaranth.com

LJ Responds:

COM1=cua0, COM2=cua1, COM3=cua2, COM4=cua3, unless Linux is told
otherwise. There is a Serial HOWTO at sunsite.unc.edu in /pub/Linux/docs/
HOWTO/ that will tell you what you need to know.

I'm not sure what you mean by “tell my Linux partition to go to COM PORT 3”.
What software are you using the modem with under Linux? Kermit? Seyon?
Something else? You probably need to configure the program you are using to
connect to the correct port. You may have a file /dev/modem which is linked to
the previously correct port, and you may need to remake the link:

rm /dev/modem
ln -s /dev/cua2 /dev/modem

assuming your modem is correctly installed on cua2.

The other very important thing to consider is the IRQ setting. The modem
should not share an IRQ with any other serial line on the computer. The
setserial program, which comes with most Linux distributions and can also be
retrieved with ftp from tsx-11.mit.edu, is the program to use to make sure that
Linux knows what IRQ your modem is on. Again, the Serial HOWTO can help
you with this.

Tcl Thanks

I want to thank Matt Welsh for writing the article “X Window System
Programming with Tcl and TK” (LJ #8). I see a way now to add an X windows
interface to my slow port of a DOS style BBS to Linux. I have started the task of
moving the simplex BBS software to Linux. Simplex is interesting because it is a
complete fidonet BBS package. I mean it can import fido echomail and netmail.
I don't know of a BBS for Linux that can do this.

I think that the article was very well written and I enjoyed reading it and fooling
around with Tcl/Tk. I can hardly wait for the one explaining how to do this from
C.

mailto:don.barnhart@bbs.amaranth.com

P.S. A list of Linux user groups would be a nice addition. Thank you for all you
have done for Linux and the Linux community!Geoffrey Robert Deasey
Geoffrey.Deasey@lambada.oit.unc.edu

LJ Responds:

Having another BBS for Linux will be nice. We have begun publishing a BBS list
in this issue (see page 44); BBS sysops are encouraged to send us information
about their Linux-specific (or even better, Linux-hosted) BBSs.

As far as Linux User Groups, see page 39 of the November issue and page 46 of
the December issue. Our biggest problem in creating a list of Linux User
Groups has been that most of the groups have not contacted us to volunteer
information.

See page 26 for Matt's latest article: Using Tcl and Tk from your C programs.

Not Again!

Hi! First off, thanks for Linux Journal. I have a comment about a particular
command in the article “Linux Tips: How to move /home to a new hard drive on
your Linux system” in December's issue.

The command:

cp -r /home/* /mnt

as suggested to copy the home directory does not copy symbolic or hard links
correctly. (I am not sure about the other command suggested for I don't have
cpio on my system.) If the user has many links, she will find that the “copy” in /
mnt takes up more disk space. The following command will copy links correctly:

(cd /home ; tar cf - .) | (cd /mnt ; tar xvf -)

Cheers,Delman Lee delman@mipg.upenn.edu

LJ Responds:

We had the same problem in an earlier article, and the same (correct)
response. I never use cp -r myself, and for some reason or other did not catch
this mistake. Thanks for the note.

Arithmetic

The control port which corresponds with printer data port 0x378 is 0x37a, and
not 0x380, as described in Kernel Korner, December issue (#8). Why is it

mailto:Geoffrey.Deasey@lambada.oit.unc.edu
mailto:delman@mipg.upenn.edu

required that the example user space printer driver be compiled with
optimization turned on? And what level opt?David Morris
dwm@shell.portal.com

Michael Responds:

You are absolutely right; I must have been writing too late at night. Fortunately,
this mistake was not propagated into the userlp.c code that was included in the
article; there, I let the computer do the arithmetic, so that I couldn't accidentally
replace hex arithmetic with decimal arithmetic. The reason I was working in
decimal was that I had just been working on the shell script version which I
mentioned but didn't include in the article, where I had to do all the arithmetic
in decimal. Perhaps that is another good reason not to try to write device
drivers as shell scripts.

The reason that the userlp.c program included has to be compiled with
optimization (of any level at all) turned on is that all the port I/O functions are
defined in the header files as “static inline” functions, a GCC extension is
enabled only by turning on optimization. I'm sorry that was not adequately
addressed in the article.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:dwm@shell.portal.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/010/toc010.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Documentation?

Phil Hughes

Issue #10, February 1995

When you go shopping you just have to say Linux every time you see Unix.

As we zero in on the second “production” release of the Linux kernel, 1.2, the
most common complaint I hear about Linux is its lack of documentation. But, is
that really a problem? I think not. Here's why.

Linux Is Very Unix-like

What this means is that if you are looking for a book on basic Linux commands
or how to use the VI editor you have a lot of choices. When you go shopping
you just have to say Linux every time you see Unix. Sure, there are some
differences, but not many from the user's point of view. As all “Unix-like”
systems converge on the various standards, such as POSIX and Spec 1170, the
differences disappear. Today there are more differences between a BSD-based
version of Unix and a System V-based version of Unix than there are between
either of these and Linux.

Linux Is Documented by the LDP

There is real Linux-specific documentation. The Linux Documentation Project
(LDP), headed by Matt Welsh, is producing high-quality documentation. Right
now, Matt's own Linux Installation and Getting Started is either included with
most CD-ROM distributions or available from the distributor or reseller.

Olaf Kirch's Linux Network Administrator's Guide has been published by SSC
and an O'Reilly version is also on the way. The excellent coverage of networking
in general will probably make this book the first Linux-specific book to become
commonly used by non-Linux (read that as Unix) users as well.

Michael K. Johnson, our editor, is now in the process of updating his Linux
Kernel Hacker's Guide (KHG). You will see some of this information in his new

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

monthly Kernel Korner column. And, once it is up to date, SSC plans to publish
it.

There are more LDP books on the way. Expect to see a System Administrator's
Guide, Programmer's Guide, User's Guide and man pages. And, of course, all of
these books are available on the archive CD-ROMs and ftp sites.

New Linux Documentation Appears Every Month

Besides the LDP efforts, publishers are getting on the Linux bandwagon.
Springer-Verlag has published a book titled Linux: Unleashing the Workstation
in Your PC, available in both German and English. O'Reilly is working on a Linux
book, and rumors indicate that Benjamin-Cummings and SAMS are working on
Linux books. 1995 will probably be the year of Linux documentation.

Why All the Complaints?

Many people who are complaining just downloaded Linux off an ftp site or
bought an archive CD. In either case, there is lots of documentation available
but it doesn't print itself. You need to remember that if you bought SCO Unix
you probably dug into your pocket for $1,000 or more as opposed to less than
$100 for Linux. Either take some money and buy the books you need or take
some time and print out what is on the CD.

The other problem, of course, is getting you to read the documentation. Many
CD vendors are now including a small book with the distribution to get you
started. People seem less intimidated by a 20-page insert in the CD case than
by a 1,000-page manual. Just remember, you may still need that 1,000 pages of
documentation to find all the answers.

Is There Still a Problem?

Yes, there is. Linux is changing so rapidly that it is hard for the documentation
to keep up. For example, if you buy a printed copy of the Linux HOWTOs that
has been sitting on a bookstore shelf for a few months, most of it is already out
of date. Documentation that will be outdated by the time it is printed is not
what publishers (or booksellers) like.

But this is one of the reasons the LDP separated the HOWTOs from the LDP
books. These books evolved with much feedback from the early users and, as
each one becomes stable, they are becoming available in printed form.

Many of the distributors include HOWTOs on their distribution CDs along with
browser tools to search, read and print them. The initial focus has been
browsers under MS-Windows. (As much as I dislike this dependence on

Microsoft, some people are going to need to be able to read the documentation
in order to get Linux up and running.)

Matt Welsh, coordinator of the LDP, has recently made the HOWTOs available
on sunsite.unc.edu in HTML format (as well as other formats). This means that
if you have the HTML format documents in an uncompressed form on your
system (some archive CDs have this) you can use a WWW browser such as Lynx
or Mosaic to access these documents in hypertext form. And, as the lead time
on pressing and distributing a CD is shorter than that for a printed book, the
consumer can get the best of both worlds—stable documentation for their
bookshelf and up-to-the-minute documentation on the CD.

In conclusion, the Linux community and the publishing community have heard
you and are taking action. There is documentation and there will be more. But
remember your obligation: support these publishing efforts including the LDP,
get the documentation and, last but not least, RTFM.

Phil Hughes is the publisher of Linux Journal.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/010/toc010.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

New Products

LJ Staff

Issue #10, February 1995

HaL Announces Ishmail for Linux, MetaCard, Version 1.4 and more.

HaL Announces Ishmail for Linux

HaL Software Systems has announced the availability of Ishmail (Information
SuperHighway Mail), a multi-media electronic mail tool for Unix systems.
Ishmail features a Motif graphical user interface and extensive support for
MIME (the Internet standard for multi-media mail). Extensive on-line help,
including a user's guide which can be viewed on-line on the World Wide Web
(www.hal.com/products/sw), combined with an industry-standard user
interface, make this product very easy to learn and to use. Ishmail is available
on a variety of Unix platforms, including Linux, SunOS, Solaris, AIX, HP-UX, DEC
OSF/1 and Novell UnixWare. Compatibility with the most common Unix mail-
folder formats ensures easy transition for new users and coexistence with
other e-mail programs.

In addition to on-line documentation, Ishmail utilizes the Internet for
distribution and technical support. The product can be down-loaded from HaL's
ftp server (ftp.halsoft.com) with a 30-day free, no-obligation evaluation license.
If the product is purchased, a permanent license is delivered by e-mail. A single-
user license is $99. Multi-user discounts, educational discounts and site licenses
are also available. For more information, contact Tom Lang, Hal Software
Systems, 3006A Longhorn Blvd., Austin, TX 78758; phone (512) 834-9962 or
(800) 762-0253; e-mail to info@halsoft.com.

MetaCard 1.4 Released

MetaCard Corporation has released MetaCard, Version 1.4, a multimedia
development environment capable of playing QuickTime, AVI, FLI and FLC
format movies and importing HyperCard 2.2 stacks. It is available in an
embedded version as well as a normal development environment. The Linux

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.hal.com/products/sw
mailto:info@halsoft.com

version is available at a special price of $195; the normal price is $495 for a
single-user.

For more information, contact Scott Raney, MetaCard Corporation, 4710 Shoup
Pl., Boulder, CO 80303; phone (303) 447-3936; e-mail to raney@metacard.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:raney@metacard.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/010/toc010.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Block Device Drivers: Interrupts

Michael K. Johnson

Issue #10, February 1995

Last month, we gave an introduction to block device drivers. This month, we
look at some tricks that are useful when writing block device drivers, starting
with the most basic “trick” of using hardware interrupts where available and
describing some neat infrastructure that block device drivers can take
advantage of by adding five lines of code and one function.

Block devices, which are usually intended to hold file-systems, may or may not
be interrupt-driven. Interrupt-driven block device drivers have the potential to
be faster and more efficient than non- interrupt-driven block device drivers.

Last month, I gave an example of a very simplistic block device driver that reads
its request queue one item at a time, satisfying each request in turn, until the
request queue is emptied, and then returning. Some block device drivers in the
standard kernel are like this. The ramdisk driver is the obvious example; it does
very little more than the simplistic block device driver I presented. Less obvious
to the casual observer, few of the CD-ROM drivers (actually none of them, as I
write this) are interrupt-driven. It is easy to determine which drivers are
interrupt-driven by reading drivers/block/blk.h, searching for the string
DEVICE_INTR, and noting which devices use it.

I'm tired of typing “block device driver”, and you are probably tired of reading it.
For the rest of this article, I will use “driver” to mean “block device driver”,
except where stated otherwise.

Efficiency Is Speed

Interrupt-driven drivers have the potential to be more efficient than non-
interrupt-driven ones because the drivers have to spend less time busy-waiting
—sitting in a tight loop, waiting for the device to become ready or finish
executing a command. They also have the potential to be faster, because it may

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

be possible to arrange for multiple requests to be satisfied at once, or to take
advantage of peculiarities of the hardware.

In particular, the SCSI disk driver tries to send the SCSI disk one command to
read multiple sectors and satisfy each of the requests as the data for each
block arrives from the disk. This is a big win considering the way the SCSI
interface is designed; because initiating a SCSI transfer takes some complex
negotiation, it takes a significant amount of time to negotiate a SCSI transfer,
and when the SCSI driver can ask for multiple blocks at the same time, it only
has to negotiate the transfer once, instead of once for each block.

This complex negotiation makes SCSI a robust bus that is useful for many
things besides disk drives. It also makes it necessary to pay attention to timing
when writing the driver, in order to take advantage of the possibilities without
being extremely slow. Before certain optimizations were added to the generic,
high-level SCSI driver in Linux, SCSI performance did not at all approach its
theoretical peak. Those optimizations made for throughput 3 to 10 times
greater on most devices.

As another example, the original floppy driver in Linux was very slow. Each time
it wanted a block, it read it in from the media. The floppy hardware is very slow
and has high latency (it rotates slowly and if you wanted to read the block that
just started going past the head, you had to wait until the disk made a full
revolution), which kept it very slow.

Around version .12, Lawrence Foard added a track buffer. Since it only takes
approximately 30% to 50% more time to read an entire track off the floppy as it
does to wait for the block you want to read to come around and be read
(depending on the type of disk and the position of the disk at the start of the
request), it makes sense, when reading a block, to read the entire track the
block is in.

As soon as the requested block has been read into the track buffer, it is copied
into the request buffer, the process waiting for it to be read can continue, and
the rest of the track is read into a private buffer area belonging to the floppy
driver. The next request for a block from that floppy is often for the very next
block, and that block is now in the track buffer and ready immediately to be
used to fulfill the request. This is true approximately 8 times out of 9 (assuming
9 blocks, or 18 sectors, per track). This single change turned the floppy driver
from a very slow driver into a very fast driver.

Alright! Enough Already!

So, you are convinced that interrupt-driven drivers have a lot more potential,
and you want to know how to turn the non-interrupt-driven driver you wrote

last month into an interrupt-driven one. I can't give you all the information you
need in a single article, but I can get you started, and after reading the rest of
this article, you will be better prepared to read the source code for real drivers,
which is the best preparation for writing your own driver.

The basic control flow of a request for a block from a non-interrupt-driven
driver usually runs something like this simplification alert:

user program calls read() read() (in the kernel) asks the buffer cache to get and
fill in the block buffer cache notices that it doesn't have the data in the cache
buffer cache asks driver to fill in a block with correct data driver satisfies
request and returns buffer cache passes newly-filled-in block back to read()
read() copies the data into the user program and returns user program
continues An interrupt-driven driver runs more like this simplification alert:
user program calls read() read() (in the kernel) asks the buffer cache to get and
fill in the block buffer cache notices that it doesn't have the data in the cache
buffer cache asks driver to fill in a block with correct data driver starts the
process of satisfying the request and returns buffer cache waits for block to be
read by sleeping on an event Some other processes run for a while, perhaps
causing other I/O on the device. the physical device has the data available and
interrupts the driver driver reads the data from the device and wakes up the
buffer cache buffer cache passes the newly-filled-in block back to read(). read()

copies the data into the user program and returns user program continues

Note that read() is not the only way to initiate I/O.

One thing to note about this is that just about anything can be done before
waking up the process(es) waiting for the request to complete. In fact, other
requests might be added to the queue. This seems, at first, like a troublesome
complication, but really is one of the important things that makes it possible to
do some worthwhile optimizations. This will become obvious as we start to
optimize the driver. We will start, though, by taking our non-interrupt-driven
driver and making it use interrupts.

Interrupts

I am going to take the foo driver I started developing last month, and add
interrupt service to it. It is hard to write good, detailed code for a hypothetical
and vaguely defined device, so (as usual) if you want to understand better after
reading this, take a look at some real devices. I suggest the hd and floppy
devices; start from the do_hd_request() and do_fd_request() routines and follow
the logic through.

static void do_foo_request(void) {
 if (foo_busy)
 /* another request is being processed;

 this one will automatically follow */
 return;
 foo_busy = 1;
 foo_initialize_io();
}
static void foo_initialize_io(void) {
 if (CURRENT->cmd == READ) {
 SET_INTR(foo_read_intr);
 } else {
 SET_INTR(foo_write_intr);
 }
 /* send hardware command to start io
 based on request; just a request to
 read if read and preparing data for
 entire write; write takes more code */
}
static void foo_read_intr(void) {
 int error=0;
 CLEAR_INTR;
 /* read data from device and put in
 CURRENT->buffer; set error=1 if error
 This is actually most of the function... */
 /* successful if no error */
 end_request(error?0:1);
 if (!CURRENT)
 /* allow new requests to be processed */
 foo_busy = 0;
 /* INIT_REQUEST will return if no requests */
 INIT_REQUEST;
 /* Now prepare to do I/O on next request */
 foo_initialize_io();
}
static void foo_write_intr(void) {
 int error=0;
 CLEAR_INTR;
 /* data has been written. error=1 if error */
 /* successful if no error */
 end_request(error?0:1);
 if (!CURRENT)
 /* allow new requests to be processed */ foo_busy = 0;
/* INIT_REQUEST will return if no requests */
 INIT_REQUEST;
 /* Now prepare to do I/O on next request */
 foo_initialize_io();
}

In blk.h, we need to add a few lines to the FOO_MAJOR section:

#elif (MAJOR_NR == FOO_MAJOR)
#define DEVICE_NAME "foobar"
#define DEVICE_REQUEST do_foo_request
#define DEVICE_INTR do_foo
#define DEVICE_NR(device) (MINOR(device) > 6)
#define DEVICE_ON(device)
#define DEVICE_OFF(device)
#endif

Note that many functions are missing from this; this is the important part to
understanding interrupt-driven device drivers; the “heart”, if you will. Also note
that, obviously, I haven't tried to compile or run this hypothetical driver. I may
have made some mistakes—you are bound to make mistakes of your own
while writing your driver, and finding bugs in this skeleton will be good practice
for finding bugs in your own driver, if you are so inclined. I do suggest that
when you write your own driver, you start with code from some other working
driver rather than starting from this skeleton code.

Structure

An explanation of some of the new ideas here is in order. The first new idea is
(obviously, I hope) the use of interrupt routines to do part of servicing the
hardware and walking down the request list. I used separate routines for
reading and writing; this isn't fundamentally necessary, but it does generally
help allow cleaner code and smaller, easier-to-read interrupt service routines.
Most (all?) of the interrupt-driven device drivers of any kind in the real kernel
use separate routines for reading and writing.

We also have a separate routine to do most of the I/O setup instead of doing it
in the request() procedure. This is so that the interrupt routines can call the
separate routings to set up the next request, if necessary, upon completion of a
request. Again, this is a design feature that makes most real-world drivers
smaller and easier to write and debug.

Context

It must be noted that any routine that is called from an interrupt is different
than all the other routines I have described so far. Routines called from an
interrupt do not execute in the context of any calling user-level program and
cannot write to user-level memory. They can only write to kernel memory. If
they absolutely need to allocate memory, they must do so with the
GFP_ATOMIC priority. In general, it is best for them to write into buffers
allocated from user-process-context routines with priority GFP_KERNEL before
the interrupt routines are set up. They also can wake up processes sleeping on
an event, as end_request() does, but they cannot sleep themselves.

Macros

The header file blk.h provides some nice macros which are used here. I won't
document them all (most are documented in The Linux Kernel Hackers' Guide,
the KHG), but I will mention the ones I use, which are used to manage
interrupts.

Instead of setting up interrupts manually, it is easier and better to use the
SET_INTR() macro. (If you want to know how to set them up manually, read the
definitions of SET_INTR in blk.h.) Easier because you just do
SET_INTR(interrupt_handling_function), and better because if you set up
automatic timeouts (which we will cover later), SET_INTR() automatically sets
them up.

Then, when the interrupt has been serviced, the interrupt service routine
(foo_read_intr() or foo_write_intr() above) clears the interrupt, so that spurious
interrupts don't get delivered to a procedure that thinks that it is supposed to

read or write to the current request. It is possible—it only takes a little more
work—to provide an interrupt routing to handle spurious interrupts. If you are
interested, read the hd driver.

Automatic Timeouts

In blk.h, a mechanism for timing out when hardware doesn't respond is
provided. If the foo device has not responded to a request after 5 seconds have
passed, there is very clearly something wrong. We will update blk.h again:

#elif (MAJOR_NR == FOO_MAJOR)
#define DEVICE_NAME "foobar"
#define DEVICE_REQUEST do_foo_request
#define DEVICE_INTR do_foo
#define DEVICE_TIMEOUT FOO_TIMER
#define TIMEOUT_VALUE 500
/* 500 == 5 seconds */
#define DEVICE_NR(device) (MINOR(device) > 6)
#define DEVICE_ON(device)
#define DEVICE_OFF(device)
#endif

This is where using SET_INTR() and CLEAR_INTR becomes helpful. Simply by
defining DEVICE_TIMEOUT, SET_INTR is changed to automatically set a
“watchdog timer” that goes off if the foo device has not responded after 5
seconds, SET_TIMER is provided to set the watchdog timer manually, and a
CLEAR_TIMER macro is provided to turn off the watchdog timer. The only three
other things that need to be done are to:

1. Add a timer, FOO_TIMER, to linux/timer.h. This must be a #define'd value
that is not already used and must be less than 32 (there are only 32 static
timers).

2. In the foo_init() function called at boot time to detect and initialize the
hardware, a line must be added:

timer_table[FOO_TIMER].fn = foo_times_out;

3. And (as you may have guessed from step 2) a function foo_times_out()

must be written to try restarting requests, or otherwise handling the time
out condition.

The foo_times_out() function should probably reset the device, try to restart the
request if appropriate, and should use the CURRENT->errors variable to keep
track of how many errors have occurred on that request. It should also check to
see if too many errors have occurred, and if so, call end_request(0) and go on to
the next request.

Exactly what steps are required depend on how the hardware device behaves,
but both the hd and the floppy drivers provide this functionality, and by
comparing and contrasting them, you should be able to determine how to write

such a function for your device. Here is a sample, loosely based on the
hd_times_out() function in hd.c:

static void hd_times_out(void)
{
 unsigned int dev;
 SET_INTR(NULL);
 if (!CURRENT)
 /* completely spurious interrupt-
 pretend it didn't happen. */
 return;
 dev = DEVICE_NR(CURRENT->dev);
#ifdef DEBUG
 printk("foo%c: timeout\n", dev+'a');
#endif
 if (++CURRENT->errors >= FOO_MAX_ERRORS) {
#ifdef DEBUG
 printk("foo%c: too many errors\n", dev+'a');
#endif
 /* Tell buffer cache: couldn't fulfill request */
 end_request(0);
 INIT_REQUEST;
 }
 /* Now try the request again */
 foo_initialize_io();
}

SET_INTR(NULL) keeps this function from being called recursively. The next two
lines ignore interrupts that occur when no requests have been issued. Then we
check for excessive errors, and if there have been too many errors on this
request, we abort it and go on to the next request, if any; if there are no
requests, we return. (Remember that the INIT_REQUEST macro causes a return
if there are no requests left.)

At the end, we are either retrying the current request or have given up and
gone on to the next request, and in either case, we need to re-start the request.

We could reset the foo device right before calling foo_initialize_io(), if the device
maintains some state and needs a reset. Again, this depends on the details of
the device for which you are writing the driver.

Stay Tuned...

Next month, we will discuss optimizing block device drivers.

Other Resources

Michael K. Johnson is the editor of Linux Journal, and is also the author of the
Linux Kernel Hackers' Guide (the KHG). He is using this column to develop and
expand on the KHG.

Archive Index Issue Table of Contents

 Advanced search

https://secure2.linuxjournal.com/ljarchive/LJ/010/2885s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/010/toc010.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

	Features
	News & Articles
	Columns
	A Conversation with Olaf Kirch
	LJ Staff

	Using Tcl and Tk from Your C Programs
	Matt Welsh

	Linux Conference at Open Systems World/FedUNIX'94
	Belinda Frazier
	Panel: What Should the Relationship Be Between
Linux Resellers and the Linux Development Community?
	Panel: The Commercial Future of Linux
	Linux and NASA: Project Beowulf
	Other Topics
	Panel: Commercial Use of Linux

	Linux in the Real World
	Vance Petree

	Report on COMDEX '94
	Belinda Frazier

	What Your DOS Manual Doesn't Tell You about Linux
	Liam Greenwood
	Help Is on the Way

	What's GNU?
	Arnold Robbins
	Why Use RCS?
	Using RCS
	Checking Files Out
	Locking Files
	Comparing Versions of a File
	Automatically Tracking Interesting
Information
	Miscellaneous RCS Commands
	Problems RCS Does Not Solve
	Summary
	Acknowledgements

	Letters to the Editor
	Various
	Modem woes
	LJ Responds:
	Tcl Thanks
	LJ Responds:
	Not Again!
	LJ Responds:
	Arithmetic
	Michael Responds:

	Documentation?
	Phil Hughes
	Linux Is Very Unix-like
	Linux Is Documented by the LDP
	New Linux Documentation Appears Every Month
	Why All the Complaints?
	Is There Still a Problem?

	New Products
	LJ Staff
	HaL Announces Ishmail for Linux
	MetaCard 1.4 Released

	Block Device Drivers: Interrupts
	Michael K. Johnson
	Efficiency Is Speed
	Alright! Enough Already!
	Interrupts
	Structure
	Context
	Macros
	Automatic Timeouts
	Stay Tuned...

